Daniel Weber |
---|
(Penalties: 0) | 1 | 77.245 [6] | 2 | 70.112 [5] | 3 | 67.745 [2] | 4 | 68.595 [2] | 5 | 68.209 [3] | 6 | 68.059 [3] | 7 | 67.456 [2] | 8 | 67.955 [2] | 9 | 67.403 [2] |
| Savage |
---|
(Penalties: 0) | 1 | 73.687 [3] | 2 | 87.689 [8] | 3 | 80.129 [8] | 4 | 71.069 [6] | 5 | 69.096 [6] | 6 | 81.649 [6] | 7 | 69.483 [6] | 8 | 78.487 [6] | 9 | |
| Baxter Turley |
---|
(Penalties: 0) | 1 | 74.895 [5] | 2 | 69.873 [4] | 3 | 66.283 [1] | 4 | 66.452 [1] | 5 | 66.136 [1] | 6 | 65.929 [1] | 7 | 66.809 [1] | 8 | 66.863 [1] | 9 | 68.785 [1] |
| Darren Frank |
---|
(Penalties: 0) | 1 | 86.008 [9] | 2 | 75.294 [9] | 3 | 75.146 [10] | 4 | 72.351 [8] | 5 | 72.237 [9] | 6 | 72.557 [9] | 7 | 70.989 [9] | 8 | 72.853 [9] | 9 | |
| Thurmond Jackson |
---|
(Penalties: 0) | 1 | 74.007 [4] | 2 | 69.133 [2] | 3 | 69.083 [5] | 4 | 67.943 [3] | 5 | 68.118 [5] | 6 | 68.475 [5] | 7 | 69.058 [5] | 8 | 68.249 [5] | 9 | 70.092 [5] |
| KRONOS |
---|
(Penalties: 0) | 1 | 71.991 [2] | 2 | 69.312 [3] | 3 | 68.016 [4] | 4 | 68.006 [5] | 5 | 67.863 [4] | 6 | 67.977 [4] | 7 | 68.262 [4] | 8 | 68.051 [4] | 9 | 68.148 [4] |
| Jesse Prater |
---|
(Penalties: 0) | 1 | 94.026 [11] | 2 | 78.818 [10] | 3 | 75.068 [9] | 4 | 81.166 [10] | 5 | 72.107 [8] | 6 | 79.172 [8] | 7 | 70.428 [7] | 8 | 72.76 [7] | 9 | |
| Whitmore |
---|
(Penalties: 0) | 1 | 71.535 [1] | 2 | 68.59 [1] | 3 | 67.966 [3] | 4 | 68.157 [4] | 5 | 67.678 [2] | 6 | 68.216 [2] | 7 | 67.953 [3] | 8 | 67.98 [3] | 9 | 69.82 [3] |
| Tevin Grant |
---|
(Penalties: 0) | 1 | 89.63 [10] | 2 | 79.172 [11] | 3 | 77.157 [11] | 4 | 75.471 [11] | 5 | 75.652 [11] | 6 | 74.921 [11] | 7 | 73.091 [11] | 8 | 74.307 [11] | 9 | |
| Mikell |
---|
(Penalties: 0) | 1 | 78.536 [7] | 2 | 73.008 [7] | 3 | 73.097 [7] | 4 | 74.007 [9] | 5 | 74.109 [10] | 6 | 74.034 [10] | 7 | 74.355 [10] | 8 | 71.968 [10] | 9 | 72.31 [10] |
| Adam Weber |
---|
(Penalties: 0) | 1 | 79.138 [8] | 2 | 71.443 [6] | 3 | 71.588 [6] | 4 | 76.246 [7] | 5 | 72.005 [7] | 6 | 71.252 [7] | 7 | 70.954 [8] | 8 | 70.701 [8] | 9 | 73.73 [8] |
|